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The main purpose of this Letter is to construct a non-standard "nite di!erence scheme and
study its associated properties for the Burgers}Fisher partial di!erential equation [1]
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where (a, D, �) are non-negative parameters. This equation, with �"0, has been used to
investigate sound waves in a viscous medium by Lighthill [2]. However, it was originally
introduced by Burgers [3] to model one-dimensional turbulence and can also be applied to
waves in #uid-"lled viscous elastic tubes and magnetohydrodynamic waves in a medium
with "nite electrical conductivity [4]. With all three parameters positive, equation (1)
corresponds to Burgers equation having non-linear reaction. An alternative view of
equation (1) is to consider it as a modi"ed Fisher equation [5]
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that has non-linear advection, i.e., auu
�
. In summary, the Burgers}Fisher equation includes

the e!ects of non-linear advection, linear di!usion, and non-linear logistic reaction.
It should be noted that equation (1), for special values for its three parameters (a, D, �),

reduces to six equations that play fundamental roles in the mathematical modelling of
a range of important physical and engineering phenomena. For example, �"0, gives the
Burgers equation [3, 4]; a"0 is the Fisher equation [4, 5]; D"0 is the di!usionless
Burgers equation with non-linear reaction [6]; a"0 and D"0 correspond to Logistic
ordinary di!erential equation [5]; a"0 and �"0 are the linear di!usion equation; and,
D"0 and �"0 are the di!usionless Burgers equation. Consequently, any "nite di!erence
scheme constructed for equation (1) also provides corresponding discrete models for the
above indicated other six ordinary and partial di!erential equations.
Before proceeding with the construction of the non-standard numerical scheme for

equation (1), a brief summary of its signi"cant mathematical properties will be given. The
reason why this is being done is to make sure that the non-standard "nite di!erence scheme
[7] to be derived has these properties, otherwise, numerical instabilities will occur [8]. First
note that equation (1) has two "xed-points or constant solutions,

uN ���"0, uN ���"1. (3)
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The "rst "xed-point is linearly unstable, while the second is linearly stable [1, 4, 5].
A second very important pair of properties are related to the positivity of the solutions and
their boundedness [5, 8, 9], i.e.,

0)u (x, 0))1N0)u (x, t))1, t'0. (4)

Third, the Burgers}Fisher equation has travelling wave solutions which take the form

u (x, t)"f (x!ct), z"x!ct, (5)

where f (z) has a second derivative and the speed of propagation, c, has the minimum
value [5]

c*2�D� (6)

Observe that the speed of propagation depends on both the di!usion coe$cient, D, and the
&&reaction rate'', �. An increase in either causes the minimum speed of the travelling wave to
become greater. From a physics point of view, this conclusion is reasonable; for example, an
increasing � corresponds to increasing the rate of reaction and, consequently, the increased
chemical interactions force the reaction to speed up. Similar remarks apply to increasingD.
Based on the previous work of Mickens on non-standard "nite di!erence schemes [7, 8]

and the enforcement of a positivity condition [9, 10], the following discrete model is selected
for equation (1):
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xPx
�
"(�x)m, tPt

�
"(�t)k, u (x, t)Pu (x

�
, t

�
)Ku�

�
. (8)

Note that this scheme has the following features: (1) the "rst order time derivative is
replaced by a forward-Euler form; (2) the non-linear advection term is written in
conservative form, i.e., uu

�
"(u�/2)

�
, and a backward-Euler representation is then used for

the "rst order space derivative; (3) a central di!erence scheme replaces the second order
space derivative in the di!usion term; (4) the non-linear u� term, in the reaction expression,
is modelled non-locally, i.e.,
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�
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The detailed reasons as to why these particular selections were made can be located in the
papers of Mickens [8}10].
Inspection of equation (7) shows that it is linear in u���

�
and solving for it gives the

expression:
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where � and R are de"ned as

�,
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. (11)

The discrete version of the positivity condition is
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"xed k all m. (12)

It follows that the condition of equation (12) is satis"ed if

1!2DR!�
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2 � u��*0. (13)

If further, 0)u�
�
)1, then this inequality can be written as
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Using the de"nitions of � and R, the following bound is placed on the time step-size, �t, if
�x, the space step-size is given:
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Previous work by Mickens [6], for the case where D"0, shows that a more restricted
bound must be used, namely,
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Equation (10) can be rewritten as
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A rather direct calculation allows the following boundedness condition to be proven (see
Appendix A for this result):
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This is the discrete equivalence of the results given by equation (4). These results, of course,
depend on having the conditions listed in equations (16) and (17) hold.
To test the above derived non-standard "nite di!erence scheme for the Burgers}Fisher

partial di!erential equation, the following initial-value problem was studied:

u (x, 0)"�
1

0

if x(1,

if x'1.
(20)

Numerical solutions for t'0 were obtained for a variety of parameter values (a, D, �), and
�, 0(�)1, where � appears as
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. (21)

This inclusion of � allowed the study of how the numerical solutions varied, if at all, when
the time/space step-size relation became more restricted. The following is a summary of
these results:

(1) For 0(�)1, the numerical solution had the same general properties as the
expected exact solutions to the Burgers}Fisher equation [1, 5], namely, the
numerical solution is smooth, monotonically decreasing, and bounded by one; see
Figure 1.

(2) The numerical scheme was also tested for values of � in the interval 1(�)2. The
calculated numerical solutions again had the correct behavior. In fact, it works for
� slightly above the value 2, e.g., �"2)05. However, for �"2)051, the numerical
solution oscillates and the boundedness condition is violated since values of u'1 were
obtained; see Figure 2.

(3) The threshold speed condition given by equation (6) was veri"ed. This was done by
"xing D at the value D"1 and running the simulation for values of � up to 100.
Figure 1. Plot of u(x, 25) for a"D"�"1 with �x"0)1.



Figure 2. Plot of u(x, 51)275) for a"D"�"1, �"2)051, and �x"0)1.
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Since equation (6) is symmetric in � and D, the obtained solutions have general validity.
As expected, an increase in the value of �D led to the appropriate increase in the speed of
the waveform [4, 5].

A large number of simulations were carried out for various values of the parameters
(a, D, �, �). In all cases, the numerical results were consistent with the above indicated
theoretical predictions. Figures 1 and 2 are but a small sample of the performed numerical
experiments.
In conclusion, a non-standard "nite di!erence scheme was constructed for the

Burgers}Fisher partial di!erential equation. This equation can model sound waves in
a viscous medium with logistic reaction. However, more complex functional forms may be
used. For example, a reaction term �u�(1!u) could be substituted for the logistic
expression. The resulting equation would then describe (among many possible applications)
sound waves in a viscous medium having combustion dynamics [10, 11]. This new scheme
has the correct "xed-points, satis"es both the positivity and boundedness conditions of
equation (1), and is easy to implement for obtaining numerical solutions since the scheme is
e!ectively explicit (see equation (18)). The validity of the scheme depends on the inequalities
stated in equations (16) and (17), i.e., once �x is selected, then �tmust satisfy equation (16).
Numerical studies indicate that the derived non-standard scheme provides excellent
numerical solutions.
A future project is to study the Burgers}Fisher equation having a non-linear di!usion

term. This equation takes the form

u
�
#auu

�
"D(uu

�
)
�
#�u(1!u). (22)

It will be of interest to see if positivity and boundedness conditions can be made to hold for
a possible non-standard "nite di!erence scheme.
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APPENDIX A: BOUNDEDNESS CONDITION

The boundedness condition given by equation (19) can be derived by use of the following
arguments. First, note that if 0)u�

�
)1 for "xed k and all values of m, then
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Second, de"ne y(v) as
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Then the maximum of y (v) occurs at
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or using equation (21),

vN "
1
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#

2D(2!�)
a��x

'1. (A.5)

The last inequality follows from 0(�)1, D'0, a'0, and �x'0. Now the function y(v)
is zero at v"0 and monotonically increases to its maximum value y(vN ). Since vN '1 and
further since v"u�

�
is restricted to values between zero and one (because 0)u�

�
)1), the

maximum of y (v) over the interval 0)v)1 occurs at the endpoint, v"1, i.e.,
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Consequently, it can be concluded that
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Dividing both sides of equation (A.8) by [1#(��t)u�
�
] gives
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However, the left side is just u���
�
, i.e., see equation (18). Hence, it follows that the inequality

relations of equation (19) are correct.
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